Valuations and polarity

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Valuations and plurisubharmonic singularities

We extend to higher dimension our valuative analysis of singularities of psh functions started in [FJ2]. Following [KoSo], we describe the geometry of the space V of all normalized valuations on C[z1, . . . , zn] centered at the origin. It is a union of simplices naturally endowed with an affine structure. Using relative positivity properties of divisors living on modifications of C n over the ...

متن کامل

Integrals and valuations

We construct a homeomorphism between the compact regular locale of integrals on a Riesz space and the locale of (valuations) on its spectrum. In fact, we construct two geometric theories and show that they are biinterpretable. The constructions are elementary and mostly consist of explicit manipulations on a distributive lattice associated to a given Riesz space.

متن کامل

Completeness and super-valuations

This paper uses the notion of Galois-connection to examine the relation between valuation-spaces and logics. Every valuation-space gives rise to a logic, and every logic gives rise to a valuation space, where the resulting pair of functions form a Galois-connection, and the composite functions are closureoperators. A valuation-space (resp., logic) is said to be complete precisely if it is Galoi...

متن کامل

Multiplicities and Rees Valuations

Let (R, m) be a local ring of Krull dimension d and I ⊆ R be an ideal with analytic spread d. We show that the j-multiplicity of I is determined by the Rees valuations of I centered on m. We also discuss a multiplicity that is the limsup of a sequence of lengths that grow at an O(nd) rate.

متن کامل

Intersection Bodies and Valuations

All GL (n) covariant star-body-valued valuations on convex polytopes are completely classified. It is shown that there is a unique nontrivial such valuation. This valuation turns out to be the so-called “intersection operator”—an operator that played a critical role in the solution of the Busemann-Petty problem. Introduction. A function Z defined on the set K of convex bodies (that is, of conve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Computational Geometry

سال: 1988

ISSN: 0179-5376,1432-0444

DOI: 10.1007/bf02187915